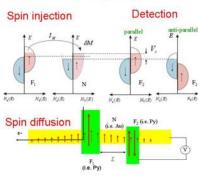

Non-local spin injection in lateral spin valves

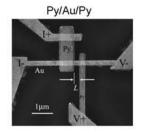
Yi Ji, Axel Hoffmann, Sam Jiang, John Pearson, and Sam Bader Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory

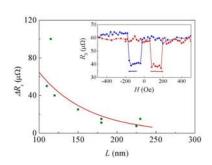

Motivation

- Spintronics is future for electronics
- Leading to new physics (e.g. spin Hall effect)
- Short spin relaxation requires lateral nanometer and/or temporal picosecond scale
- Lateral spin transport is a highly desired but less explored

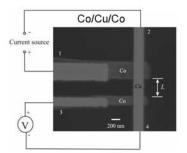
- · Using spin degree of freedom holds promise for increased energy efficiency
- Already applied in computer hard drives and non-volatile memory
- Integration of spintronic devices require lateral spin transport

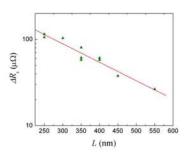
Lateral Spin Valve




$$\Delta R_s = \frac{V_s}{I_s} = \frac{P_1 P_2 \rho \lambda_s}{A} e^{-\frac{L}{\lambda_s}}$$

λ_s: spin diffusion length P: injected spin polarization


Y. Ji et al., APL 85, 6218 (2004)


Accomplishments

 $\lambda_s = 63 \text{ nm}$, Au at 10 K P = 3% for Py/Au interface

 $\lambda_e = 200 \text{ nm}$, Cu at 10 K P = 7% for Co/Cu interface

New Materials

Goals

- · Long spin diffusion length
- · Higher injected polarization

Opportunities

- Magnetic thin films (MSD)
- Complex Oxide (MSD)
- Organic Materials (U of C)
- Nanofabrication (CNM)

Proposed work

- · Use half-metal as injector: Manganites
- · Injection through a tunnel barrier

Outlook

New concepts

Goals

- · Modulation of spin accumulation
- · Switching by pure spin current

Opportunities

- · One of the few groups worldwide that can fabricate lateral spin transport devices
- · Characterization tools: X-ray microscopy

Proposed work

- · Three terminal device to control spin accumulation
- Switch a magnet by a pure spin current
- · Direct imaging of spin accumulation
- · Measure spin diffusion length in ferromagnets
- Spin torque transistor

W-31-109-ENG-38.

New physics

Goals

- · Spin scattering in transport
- · Spin-transfer torque
- · Excitation of spin dynamics

Opportunities


- Time resolved PEEM (ALS)
- RF expertise (MSD)
- · Theoretical collaborators (through MTI: Delft, IBM)

Proposed work

- · Magnetization precession
- Spin echo
- Spin Hall effect

Y. Ji, A. Hoffmann, J. E. Pearson, and S. D. Bader, Applied Physics Letters 88, 052509 (2006)

